Neutron Moderator
   HOME

TheInfoList



OR:

In nuclear engineering, a neutron moderator is a medium that reduces the speed of
fast neutrons The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
, ideally without capturing any, leaving them as
thermal neutrons The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
with only minimal (thermal) kinetic energy. These thermal neutrons are immensely more susceptible than fast neutrons to propagate a nuclear chain reaction of
uranium-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exi ...
or other
fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be t ...
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
by colliding with their
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron i ...
.
Water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...
(sometimes called "light water" in this context) is the most commonly used moderator (roughly 75% of the world's reactors). Solid
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on lar ...
(20% of reactors) and heavy water (5% of reactors) are the main alternatives.
Beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form m ...
has also been used in some experimental types, and
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ...
s have been suggested as another possibility.


Moderation

Neutrons are normally bound into an
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron i ...
, and do not exist free for long in nature. The unbound
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
has a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of 10 minutes and 11 seconds. The release of neutrons from the nucleus requires exceeding the
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
of the neutron, which is typically 7-9
MeV In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacu ...
for most
isotopes Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
.
Neutron source A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear p ...
s generate free neutrons by a variety of nuclear reactions, including nuclear fission and
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manifest ...
. Whatever the source of neutrons, they are released with energies of several MeV. According to the
equipartition theorem In classical statistical mechanics, the equipartition theorem relates the temperature of a system to its average energies. The equipartition theorem is also known as the law of equipartition, equipartition of energy, or simply equipartition. T ...
, the average
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acc ...
, \bar, can be related to
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
, T, via: :\bar=\fracm_n \langle v^2 \rangle=\frack_B T, where m_n is the neutron mass, \langle v^2 \rangle is the average squared neutron speed, and k_B is the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constant, ...
. The characteristic
neutron temperature The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
of several-MeV neutrons is several tens of billions
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and phy ...
. Moderation is the process of the reduction of the initial high speed (high kinetic energy) of the free neutron. Since energy is conserved, this reduction of the neutron speed takes place by transfer of energy to a material called a ''moderator''. The probability of scattering of a neutron from a nucleus is given by the
scattering cross section In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation (e.g. a particle beam, sound wave, light, or an X-ray) intersects a localized phenomenon (e.g. a particle o ...
. The first couple of collisions with the moderator may be of sufficiently high energy to excite the nucleus of the moderator. Such a collision is
inelastic In economics, elasticity measures the percentage change of one economic variable in response to a percentage change in another. If the price elasticity of the demand of something is -2, a 10% increase in price causes the demand quantity to fall ...
, since some of the kinetic energy is transformed to
potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potentia ...
by exciting some of the internal degrees of freedom of the nucleus to form an excited state. As the energy of the neutron is lowered, the collisions become predominantly
elastic Elastic is a word often used to describe or identify certain types of elastomer, elastic used in garments or stretchable fabrics. Elastic may also refer to: Alternative name * Rubber band, ring-shaped band of rubber used to hold objects togeth ...
, i.e., the total kinetic energy and momentum of the system (that of the neutron and the nucleus) is conserved. Given the mathematics of elastic collisions, as neutrons are very light compared to most nuclei, the most efficient way of removing kinetic energy from the neutron is by choosing a moderating nucleus that has near identical mass. A collision of a neutron, which has mass of 1, with a 1H nucleus (a proton) could result in the neutron losing virtually all of its energy in a single head-on collision. More generally, it is necessary to take into account both glancing and head-on collisions. The ''mean logarithmic reduction of neutron energy per collision'', \xi, depends only on the atomic mass, A, of the nucleus and is given by: \xi= \ln\frac=1+\frac\ln\left(\frac\right). This can be reasonably approximated to the very simple form \xi\simeq \frac. From this one can deduce n, the expected number of collisions of the neutron with nuclei of a given type that is required to reduce the kinetic energy of a neutron from E_0 to E_1 : n=\frac(\ln E_0-\ln E_1).


Choice of moderator materials

Some nuclei have larger absorption cross sections than others, which removes free neutrons from the flux. Therefore, a further criterion for an efficient moderator is one for which this parameter is small. The ''moderating efficiency'' gives the ratio of the macroscopic cross sections of scattering, \Sigma_s, weighted by \xi divided by that of absorption, \Sigma_a: i.e., \frac. For a compound moderator composed of more than one element, such as light or heavy water, it is necessary to take into account the moderating and absorbing effect of both the hydrogen isotope and oxygen atom to calculate \xi. To bring a neutron from the fission energy of E_0 2 MeV to an E of 1 eV takes an expected n of 16 and 29 collisions for H2O and D2O, respectively. Therefore, neutrons are more rapidly moderated by light water, as H has a far higher \Sigma_s. However, it also has a far higher \Sigma_a, so that the moderating efficiency is nearly 80 times higher for heavy water than for light water. ''The ideal moderator is of low mass, high scattering cross section, and low absorption cross section''.


Distribution of neutron velocities once moderated

After sufficient impacts, the speed of the neutron will be comparable to the speed of the nuclei given by thermal motion; this neutron is then called a
thermal neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
, and the process may also be termed ''thermalization''. Once at equilibrium at a given temperature the distribution of speeds (energies) expected of rigid spheres scattering elastically is given by the
Maxwell–Boltzmann distribution In physics (in particular in statistical mechanics), the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann. It was first defined and use ...
. This is only slightly modified in a real moderator due to the speed (energy) dependence of the absorption cross-section of most materials, so that low-speed neutrons are preferentially absorbed, so that the true neutron velocity distribution in the core would be slightly hotter than predicted.


Reactor moderators

In a
thermal-neutron reactor A thermal-neutron reactor is a nuclear reactor that uses slow or thermal neutrons. ("Thermal" does not mean hot in an absolute sense, but means in thermal equilibrium with the medium it is interacting with, the reactor's fuel, moderator and struct ...
, the nucleus of a heavy fuel element such as
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
absorbs a slow-moving free neutron, becomes unstable, and then splits (" fissions") into two smaller atoms (" fission products"). The fission process for 235U nuclei yields two fission products, two to three fast-moving free neutrons, plus an amount of
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
primarily manifested in the kinetic energy of the recoiling fission products. The free neutrons are emitted with a kinetic energy of ~2 MeV each. Because more
free neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave ...
s are released from a uranium fission event than thermal neutrons are required to initiate the event, the reaction can become self-sustaining – a
chain reaction A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events. Chain reactions are one way that sys ...
– under controlled conditions, thus liberating a tremendous amount of energy (see article nuclear fission). The probability of further fission events is determined by the fission cross section, which is dependent upon the speed (energy) of the incident neutrons. For thermal reactors, high-energy neutrons in the MeV-range are much less likely (though not unable) to cause further fission. The newly released fast neutrons, moving at roughly 10% of the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
, must be slowed down or "moderated", typically to speeds of a few kilometres per second, if they are to be likely to cause further fission in neighbouring 235U nuclei and hence continue the chain reaction. This speed happens to be equivalent to temperatures in the few hundred Celsius range. In all moderated reactors, some neutrons of all energy levels will produce fission, including fast neutrons. Some reactors are more fully ''thermalised'' than others; for example, in a
CANDU reactor The CANDU (Canada Deuterium Uranium) is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide ( heavy water) moderator and its use of (originally, natural) uranium fuel. C ...
nearly all fission reactions are produced by thermal neutrons, while in a
pressurized water reactor A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants (with notable exceptions being the UK, Japan and Canada). In a PWR, the primary coolant (water) i ...
(PWR) a considerable portion of the fissions are produced by higher-energy neutrons. In the proposed water-cooled supercritical water reactor (SCWR), the proportion of fast fissions may exceed 50%, making it technically a
fast-neutron reactor A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV or greater, on average), as oppose ...
. A
fast reactor A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV or greater, on average), as oppose ...
uses no moderator, but relies on fission produced by unmoderated fast neutrons to sustain the chain reaction. In some fast reactor designs, up to 20% of fissions can come from direct fast neutron fission of uranium-238, an isotope which is not
fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be t ...
at all with thermal neutrons. Moderators are also used in non-reactor
neutron source A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear p ...
s, such as
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
-
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form m ...
(using the ( α,n) reaction) and spallation sources (using ( p,xn) reactions with neutron rich heavy elements as targets).


Form and location

The form and location of the moderator can greatly influence the cost and safety of a reactor. Classically, moderators were precision-machined blocks of high purity graphite with embedded ducting to carry away heat. They were in the hottest part of the reactor, and therefore subject to
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engi ...
and
ablation Ablation ( la, ablatio – removal) is removal or destruction of something from an object by vaporization, chipping, erosion, erosive processes or by other means. Examples of ablative materials are described below, and include spacecraft materi ...
. In some materials, including
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on lar ...
, the impact of the neutrons with the moderator can cause the moderator to accumulate dangerous amounts of
Wigner energy Eugene Paul "E. P." Wigner ( hu, Wigner Jenő Pál, ; November 17, 1902 – January 1, 1995) was a Hungarian-American theoretical physicist who also contributed to mathematical physics. He received the Nobel Prize in Physics in 1963 "for his con ...
. This problem led to the infamous
Windscale fire The Windscale fire of 10 October 1957 was the worst nuclear accident in the United Kingdom's history, and one of the worst in the world, ranked in severity at level 5 out of a possible 7 on the International Nuclear Event Scale. The fire was in ...
at the Windscale Piles, a nuclear reactor complex in the United Kingdom, in 1957. In a carbon dioxide cooled graphite moderated reactor where coolant and moderator are in contact with one another, the
Boudouard reaction The Boudouard reaction, named after Octave Leopold Boudouard, is the redox reaction of a chemical equilibrium mixture of carbon monoxide and carbon dioxide at a given temperature. It is the disproportionation of carbon monoxide into carbon dioxide ...
needs to be taken into account. This is also the case if fuel elements have an outer layer of carbon - as in some
TRISO Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission. Most nuclear fuels contain heavy fissile actinide elements that are capable of undergoin ...
fuels - or if an inner carbon layer becomes exposed by failure of one or several outer layers. The moderators of some
pebble-bed reactor The pebble-bed reactor (PBR) is a design for a graphite- moderated, gas-cooled nuclear reactor. It is a type of very-high-temperature reactor (VHTR), one of the six classes of nuclear reactors in the Generation IV initiative. The basic des ...
s are not only simple, but also inexpensive: the nuclear fuel is embedded in spheres of reactor-grade
pyrolytic carbon Pyrolytic carbon is a material similar to graphite, but with some covalent bonding between its graphene sheets as a result of imperfections in its production. Pyrolytic carbon is man-made and is thought not to be found in nature.Ratner, Buddy D. ...
, roughly of the size of
tennis ball A tennis ball is a ball designed for the sport of tennis. Tennis balls are fluorescent yellow in organised competitions, but in recreational play can be virtually any color. Tennis balls are covered in a fibrous felt which modifies their aerodyna ...
s. The spaces between the balls serve as ducting. The reactor is operated above the Wigner annealing temperature so that the graphite does not accumulate dangerous amounts of
Wigner energy Eugene Paul "E. P." Wigner ( hu, Wigner Jenő Pál, ; November 17, 1902 – January 1, 1995) was a Hungarian-American theoretical physicist who also contributed to mathematical physics. He received the Nobel Prize in Physics in 1963 "for his con ...
. In CANDU and PWR reactors, the moderator is liquid water ( heavy water for CANDU, light water for PWR). In the event of a
loss-of-coolant accident A loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor; if not managed effectively, the results of a LOCA could result in reactor core damage. Each nuclear plant's emergency core cooling system (ECCS) exists specifically t ...
in a PWR, the moderator is also lost and the reaction will stop. This negative
void coefficient In nuclear engineering, the void coefficient (more properly called void coefficient of reactivity) is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor ...
is an important safety feature of these reactors. In CANDU the moderator is located in a separate heavy-water circuit, surrounding the pressurized heavy-water coolant channels. The heavy water will slow down a significant portion of neutrons to the resonance integral of increasing the neutron capture in this isotope that makes up over 99% of the uranium in CANDU fuel thus decreasing the amount of neutrons available for fission. As a consequence, removing some of the heavy water will increase reactivity until so much is removed that too little moderation is provided to keep the reaction going. This design gives CANDU reactors a positive
void coefficient In nuclear engineering, the void coefficient (more properly called void coefficient of reactivity) is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor ...
, although the slower neutron kinetics of heavy-water moderated systems compensates for this, leading to comparable safety with PWRs. In the light water cooled graphite moderated
RBMK The RBMK (russian: реактор большой мощности канальный, РБМК; ''reaktor bolshoy moshchnosti kanalnyy'', "high-power channel-type reactor") is a class of graphite-moderated nuclear power reactor designed and buil ...
, a reactor type originally envisioned to allow both production of
weapons grade plutonium Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon or has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nucle ...
and large amounts of usable heat while using natural uranium and foregoing the use of heavy water, the light water coolant acts primarily as a neutron absorber and thus its removal in a
Loss of Coolant Accident A loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor; if not managed effectively, the results of a LOCA could result in reactor core damage. Each nuclear plant's emergency core cooling system (ECCS) exists specifically ...
or by conversion of water into steam will ''increase'' the amount of thermal neutrons available for fission. Following the
Chernobyl nuclear accident The Chernobyl disaster was a nuclear accident that occurred on 26 April 1986 at the No. 4 nuclear reactor, reactor in the Chernobyl Nuclear Power Plant, near the city of Pripyat in the north of the Ukrainian Soviet Socialist Republic, Ukrainia ...
the issue was remedied so that all still operating RBMK type reactors have a slightly negative void coefficient but they now require a higher degree of
uranium enrichment Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 ...
in their fuel.


Moderator impurities

Good moderators are free of neutron-absorbing impurities such as boron. In commercial nuclear power plants the moderator typically contains dissolved boron. The boron concentration of the reactor coolant can be changed by the operators by adding boric acid or by diluting with water to manipulate reactor power. The Nazi Nuclear Program suffered a substantial setback when its inexpensive graphite moderators failed to function. At that time, most graphites were deposited onto boron electrodes, and the German commercial graphite contained too much boron. Since the war-time German program never discovered this problem, they were forced to use far more expensive heavy water moderators. This problem was discovered by famous physicist
Leó Szilárd Leo Szilard (; hu, Szilárd Leó, pronounced ; born Leó Spitz; February 11, 1898 – May 30, 1964) was a Hungarian-German-American physicist and inventor. He conceived the nuclear chain reaction in 1933, patented the idea of a nuclear ...


Non-graphite moderators

Some moderators are quite expensive, for example
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form m ...
, and reactor-grade heavy water. Reactor-grade heavy water must be 99.75% pure to enable reactions with unenriched uranium. This is difficult to prepare because heavy water and regular water form the same
chemical bond A chemical bond is a lasting attraction between atoms or ions that enables the formation of molecules and crystals. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds, or through the sharing of ...
s in almost the same ways, at only slightly different speeds. The much cheaper light water moderator (essentially very pure regular water) absorbs too many neutrons to be used with unenriched natural uranium, and therefore
uranium enrichment Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 ...
or nuclear reprocessing becomes necessary to operate such reactors, increasing overall costs. Both enrichment and reprocessing are expensive and technologically challenging processes, and additionally both enrichment and several types of reprocessing can be used to create weapons-usable material, causing proliferation concerns. Reprocessing schemes that are more resistant to proliferation are currently under development. The CANDU reactor's moderator doubles as a safety feature. A large tank of low-temperature, low-pressure heavy water moderates the neutrons and also acts as a heat sink in extreme
loss-of-coolant accident A loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor; if not managed effectively, the results of a LOCA could result in reactor core damage. Each nuclear plant's emergency core cooling system (ECCS) exists specifically t ...
conditions. It is separated from the fuel rods that actually generate the heat. Heavy water is very effective at slowing down (moderating) neutrons, giving CANDU reactors their important and defining characteristic of high "
neutron economy Neutron economy is defined as the ratio of an adjoint weighted average of the excess neutron production divided by an adjoint weighted average of the fission production. The distribution of neutron energies in a nuclear reactor differs from the f ...
". Unlike a light water reactor where adding water to the core in an accident might provide enough moderation to make a subcritical assembly go critical again, heavy water reactors will decrease their reactivity if light water is added to the core, which provides another important safety feature in the case of certain accident scenarios. However, any heavy water that becomes mixed with the emergency coolant light water will become too diluted to be useful without isotope separation.


Nuclear weapon design

Early speculation about
nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission bomb) or a combination of fission and fusion reactions ( thermonuclear bomb), producing a nuclear explosion. Both bom ...
s assumed that an "atom bomb" would be a large amount of
fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be t ...
material, moderated by a neutron moderator, similar in structure to a
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
or "pile". Only the
Manhattan project The Manhattan Project was a research and development undertaking during World War II that produced the first nuclear weapons. It was led by the United States with the support of the United Kingdom and Canada. From 1942 to 1946, the project w ...
embraced the idea of a
chain reaction A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events. Chain reactions are one way that sys ...
of
fast neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s in pure metallic
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
or
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
. Other moderated designs were also considered by the Americans; proposals included using uranium deuteride as the fissile material.Operation Upshot–Knothole
/ref>
- globalsecurity.org
In 1943
Robert Oppenheimer J. Robert Oppenheimer (; April 22, 1904 – February 18, 1967) was an American theoretical physicist. A professor of physics at the University of California, Berkeley, Oppenheimer was the wartime head of the Los Alamos Laboratory and is often ...
and
Niels Bohr Niels Henrik David Bohr (; 7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922. B ...
considered the possibility of using a "pile" as a weapon. The motivation was that with a
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on lar ...
moderator it would be possible to achieve the chain reaction without the use of any
isotope separation Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is varied. The largest variety is used in research (e.g. in chemistry where atoms of "marker" n ...
. However, plutonium can be produced ("bred") sufficiently isotopically pure as to be usable in a bomb and then has to be "only" separated chemically, a much easier processes than isotope separation, albeit still a challenging one. In August 1945, when information of the
atomic bombing of Hiroshima The United States detonated two atomic bombs over the Japanese cities of Hiroshima and Nagasaki on 6 and 9 August 1945, respectively. The two bombings killed between 129,000 and 226,000 people, most of whom were civilians, and remain the onl ...
was relayed to the scientists of the German nuclear program, interred at Farm Hall in England, chief scientist Werner Heisenberg hypothesized that the device must have been "something like a nuclear reactor, with the neutrons slowed by many collisions with a moderator". The German program, which had been much less advanced, had never even considered the plutonium-option and didn't discover a feasible method of large scale isotope separation in uranium. After the success of the Manhattan project, all major :Nuclear weapons programs, nuclear weapons programs have relied on fast neutrons in their weapons designs. The notable exception is the ''Upshot-Knothole Ruth, Ruth'' and ''Upshot-Knothole Ray, Ray'' test explosions of Operation Upshot–Knothole. The aim of the University of California Radiation Laboratory designs was the exploration of deuterated polyethylene charge containing uranium as a candidate thermonuclear fuel, hoping that deuterium would fuse (becoming an active medium) if compressed appropriately. If successful, the devices could also lead to a compact primary containing minimal amount of fissile material, and powerful enough to ignite RAMROD a thermonuclear weapon designed by UCRL at the time. For a "hydride" primary, the degree of compression would not make deuterium to fuse, but the design could be subjected to boosting, raising the yield considerably. The Pit (nuclear weapon), cores consisted of a mix of uranium deuteride (UD3), and deuterated polyethylene. The core tested in ''Ray'' used uranium low enriched in U235, and in both shots deuterium acted as the neutron moderator. The predicted Nuclear weapon yield, yield was 1.5 to 3 kt for ''Ruth'' (with a maximum potential yield of 20 kt) and 0.5-1 kt for ''Ray''. The tests produced yields of 200 tons of TNT each; both tests were considered to be fizzle (nuclear test), fizzles. The main benefit of using a moderator in a nuclear explosive is that the amount of fissile material needed to reach Criticality (status), criticality may be greatly reduced. Slowing of fast neutrons will increase the Nuclear cross section, cross section for neutron absorption, reducing the critical mass. A side effect is however that as the chain reaction progresses, the moderator will be heated, thus losing its ability to cool the neutrons. Another effect of moderation is that the time between subsequent neutron generations is increased, slowing down the reaction. This makes the containment of the explosion a problem; the inertia that is used to confine Nuclear weapon design#Implosion-type weapon, implosion type bombs will not be able to confine the reaction. The end result may be a fizzle instead of a bang. The explosive power of a fully moderated explosion is thus limited, at worst it may be equal to a chemical explosive of similar mass. Again quoting Heisenberg: "One can never make an explosive with slow neutrons, not even with the heavy water machine, as then the neutrons only go with thermal speed, with the result that the reaction is so slow that the thing explodes sooner, before the reaction is complete." While a nuclear bomb working on
thermal neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s may be impractical, modern weapons designs may still benefit from some level of moderation. A
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form m ...
tamper used as a neutron reflector will also act as a moderator.Nuclear Weapons Frequently Asked Questions - 4.1.7.3.2 Reflectors
/ref>
/ref>


Materials used

* Hydrogen, as in ordinary " light water". Because Hydrogen-1, protium also has a significant Neutron cross section, cross section for neutron capture only limited moderation is possible without losing too many neutrons. The less-moderated neutrons are relatively more likely to be captured by uranium-238 and less likely to fission
uranium-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exi ...
, so light water reactors require enriched uranium to operate. ** There are also proposals to use the compound formed by the chemical reaction of metallic uranium and hydrogen (uranium hydride—UH3) as a combination fuel and moderator in Hydrogen Moderated Self-regulating Nuclear Power Module, a new type of reactor. ** Hydrogen is also used in the form of cryogenic liquid methane and sometimes liquid hydrogen as a cold neutron source in some research reactors: yielding a
Maxwell–Boltzmann distribution In physics (in particular in statistical mechanics), the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann. It was first defined and use ...
for the neutrons whose maximum is shifted to much lower energies. ** Hydrogen combined with carbon as in paraffin wax was used in some early German nuclear energy project, German experiments. * Deuterium, in the form of heavy water, in heavy water reactors, e.g. CANDU. Reactors moderated with heavy water can use unenriched natural uranium. * Carbon, in the form of reactor-grade
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on lar ...
or
pyrolytic carbon Pyrolytic carbon is a material similar to graphite, but with some covalent bonding between its graphene sheets as a result of imperfections in its production. Pyrolytic carbon is man-made and is thought not to be found in nature.Ratner, Buddy D. ...
, used in e.g.
RBMK The RBMK (russian: реактор большой мощности канальный, РБМК; ''reaktor bolshoy moshchnosti kanalnyy'', "high-power channel-type reactor") is a class of graphite-moderated nuclear power reactor designed and buil ...
and
pebble-bed reactor The pebble-bed reactor (PBR) is a design for a graphite- moderated, gas-cooled nuclear reactor. It is a type of very-high-temperature reactor (VHTR), one of the six classes of nuclear reactors in the Generation IV initiative. The basic des ...
s, or in compounds, e.g. carbon dioxide. As carbon dioxide contains twice as many oxygen atoms as it does carbon atoms and both have moderating and neutron absorbing effects in a similar range (see above), a significant share of the moderation in a (yet to be built) carbon dioxide moderated reactor would actually come from the oxygen. Lower-temperature reactors are susceptible to buildup of
Wigner energy Eugene Paul "E. P." Wigner ( hu, Wigner Jenő Pál, ; November 17, 1902 – January 1, 1995) was a Hungarian-American theoretical physicist who also contributed to mathematical physics. He received the Nobel Prize in Physics in 1963 "for his con ...
in the material. Like deuterium-moderated reactors, some of these reactors can use unenriched natural uranium. ** Graphite is also deliberately allowed to be heated to around 2000 K or higher in some research reactors to produce a neutron temperature, hot neutron source: giving a
Maxwell–Boltzmann distribution In physics (in particular in statistical mechanics), the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann. It was first defined and use ...
whose maximum is spread out to generate higher energy neutrons. *
Beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form m ...
, in the form of metal. Beryllium is expensive and toxic, so its use is limited. * Lithium-7, in the form of a lithium fluoride salt, typically in conjunction with beryllium fluoride salt (FLiBe). This is the most common type of moderator in a molten salt reactor. Other light-nuclei materials are unsuitable for various reasons. Helium is a gas and it requires special design to achieve sufficient density; lithium-6 and boron-10 absorb neutrons.


See also

*Nuclear cross section *Neutron reflector *Neutron scattering *Wigner effect


Notes


References

* {{DEFAULTSORT:Neutron Moderator Nuclear technology Neutron instrumentation, Moderator Neutron moderators,